Histone deacetylase 10 relieves repression on the melanogenic program by maintaining the deacetylation status of repressors.

نویسندگان

  • I-Lu Lai
  • Tung-Ping Lin
  • Ya-Li Yao
  • Ching-Yi Lin
  • Mei-Ju Hsieh
  • Wen-Ming Yang
چکیده

HDAC10 belongs to the class II histone deacetylase family; however, its functions remain enigmatic. We report here that the HDAC10 protein complex contained deacetylated chaperone protein hsc70, and HDAC10 relieved repression of melanogenesis by decreasing the repressional activity of two transcriptional regulators, paired box protein 3 (Pax3) and KRAB-associated protein 1 (KAP1). HDAC10 physically interacted with Pax3 and KAP1 in a ternary complex and maintained Pax3 and KAP1 in a deacetylated state. Deacetylated Pax3 and KAP1 derepressed promoters of microphthalmia-associated transcription factor (MITF) and melanocyte-specific tyrosinase-related protein 1 and 2 (TRP-1 and TRP-2), three genes of the melanogenesis cascade, in a trichostatin A-sensitive manner. Co-occupancy of melanogenic promoters by HDAC10, Pax3, and KAP1 only happened in cells of the melanocyte lineage, and KAP1 facilitated nuclear enrichment of HDAC10. Finally, cellular melanin content correlated directly with the expression level and activity of HDAC10. Our results not only show that HDAC10 regulates melanogenesis but also demonstrate that the transcriptional activities of Pax3 and KAP1 are intimately linked to their acetylation status.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted recruitment of Rpd3 histone deacetylase represses transcription by inhibiting recruitment of Swi/Snf, SAGA, and TATA binding protein.

Certain DNA-binding repressors inhibit transcription by recruiting Rpd3 histone deacetylase complexes to promoters and generating domains of histone deacetylation that extend over a limited number of nucleosomes. Here, we show that the degree of Rpd3-dependent repression depends on the activator and the level of activation, not the extent of histone deacetylation. In all cases tested, activator...

متن کامل

Functional interaction between the Drosophila knirps short range transcriptional repressor and RPD3 histone deacetylase.

Knirps and other short range transcriptional repressors play critical roles in patterning the early Drosophila embryo. These repressors are known to bind the C-terminal binding protein corepressor, but their mechanism of action is poorly understood. We purified functional recombinant Knirps protein from transgenic embryos to identify possible cofactors that contribute to the activity of this pr...

متن کامل

The Rpd3 histone deacetylase is required for segmentation of the Drosophila embryo.

Previous studies have implicated histone deacetylation and chromatin condensation as critical mechanisms of transcription repression in yeast and mammals. A specific histone deacetylase, Rpd3, interacts with a variety of sequence-specific transcriptional repressors, including Mad-Max heterodimers and members of the nuclear receptor superfamily. Here, we present evidence that a strong hypomorphi...

متن کامل

Active repression of methylated genes by the chromosomal protein MBD1.

MBD1 belongs to a family of mammalian proteins that share a methyl-CpG binding domain. Previous work has shown that MBD1 binds to methylated sites in vivo and in vitro and can repress transcription from methylated templates in transcription extracts and in cultured cells. In the present study we established by several experimental criteria that, contrary to a previous report, MBD1 is not a comp...

متن کامل

An Hdac1/Rpd3-Poised Circuit Balances Continual Self-Renewal and Rapid Restriction of Developmental Potential during Asymmetric Stem Cell Division.

How the developmental potential of differentiating stem cell progeny becomes rapidly and stably restricted following asymmetric stem cell division is unclear. In the fly larval brain, earmuff (erm) uniquely functions to restrict the developmental potential of intermediate neural progenitors (INPs) generated by asymmetrically dividing neural stem cells (neuroblasts). Here we demonstrate that the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 10  شماره 

صفحات  -

تاریخ انتشار 2010